Problem 3.3

An analogue Butterworth-Lowpass shall be realised, showing the following characteristics:

- Pass-tolerance	$\delta_{\rm d} = 0.05$
- Stop-tolerance	$\delta_{\rm s} = 0.05$
- Corner frequency of the Pass-Band	$f_{\rm d} = \omega_{\rm d}/2\pi = 12 \text{ kHz}$
- Corner frequency of the Stop-Band	$f_{\rm s} = \omega_{\rm s}/2\pi = 13 \ \rm kHz$

- 3.3.1 Draw the tolerance scheme for the absolute of the transfer-function $H_{\rm fF}(f) = H_{\rm F}(\omega = 2\pi f)$ of the low-pass, as well as the tolerance-scheme for the approximating function $A_{\rm f}(f) = A(\omega = 2\pi f)$. Input the given values.
- 3.3.2 Calculate the minimal order N needed to realise the low-pass.
- 3.3.3 Calculate the 3dB-frequency $f_{\rm T} = \omega_{\rm T}/2\pi$ of the low-pass using the results of 3.3.2.
- 3.3.4 Calculate using the results of 3.3.2 the frequency $f_{s,\min}$, at which $|H_F(\omega = 2\pi f)|$ gets lower than δ_s , if the frequency f is increased from f = 0.
- 3.3.5 Determine the 2N poles of the function $A_{\rm L}(p) = A(\omega = p/j)$.
- 3.3.6 Determine the N poles of the system-function $H_{\rm L}(p)$ of the low-pass and give an expression for $H_{\rm L}(p)$.
- 3.3.7 Calculate the values of $H_{\rm fF}(f)$ for $f_{\rm n} = f_{\rm d} + n f_{\rm d}/120$ with n = -1(1)10, using the results of 3.3.2 and draw the function in the tolerance-scheme of $H_{\rm fF}(f)$ drawn in 3.3.1.

Problem 3.4

An analogue Chebyshev-Lowpass of type 1 shall be realised, showing the following characteristics:

- Pass-tolerance	$\delta_{\rm d} = 0.1$
- Stop-tolerance	$\delta_{\rm s} = 0.05$
- Corner frequency of the Pass-Band	$f_{\rm d} = \omega_{\rm d}/2\pi = 5 \ {\rm MHz}$
- Corner frequency of the Stop-Band	$f_{\rm s} = \omega_{\rm s}/2\pi = 5.5 \; {\rm MHz}$

- 3.4.1 Draw the tolerance scheme for the absolute of the transfer-function $H_{\rm fF}(f) = H_{\rm F}(\omega = 2\pi f)$ of the low-pass, as well as the tolerance-scheme for the approximating function $A_{\rm f}(f) = A(\omega = 2\pi f)$. Input the given values.
- 3.4.2 Calculate the minimal order N needed to realise the low-pass.
- 3.4.3 Calculate the value of ϵ , which gives the amplitude of the fluctuations of $A(\omega)$ in the pass-band, independently of the low-pass order.
- 3.4.4 Determine the poles of the system-function $H_{\rm L}(p)$ of the low-pass using the previous results.
- 3.4.5 Calculate the values of $H_{\rm fF}(f)$ for $f_{\rm n} = f_{\rm d} + n f_{\rm d}/50$ with n = -1(1)10, using the previous results and draw the function in the tolerance-scheme of $H_{\rm fF}(f)$ drawn in 3.4.1.